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Abstract

This paper proposes the models of human motion
prior with multiple actions for action recognition in
videos. A training sequence of each action, such as
walking and jogging, is separately recorded by a mo-
tion capture system and modeled independently. Unlike
existing approaches with similar motion prior models,
our method uses the multiple models simultaneously for
particle filtering in order to track the pose of a tar-
get person without being interfered by ambiguous mo-
tion. In addition to robustness to ambiguous motion,
the particle transition among multiple motion models
allows us to continuously identify the action of the tar-
get person frame-by-frame.

1 Introduction

This paper proposes continuous action recognition in
videos. Our proposed method achieves frame-by-frame
action recognition by continuous pose tracking, while
previously ones classifies a sequence.
For accurate and robust pose tracking, motion

prior[1, 2, 3] is effective. The precise prior of a human
body can be obtained by a motion capture system.
Many kinds of actions, such as walking and running,
have been recorded in datasets[4, 5] that are widely
used for modeling and evaluating human motion. The
motion model of each action (i.e. action-specific mo-
tion model) can be used for pose tracking in that ac-
tion. Finding the proper action model at each mo-
ment corresponds to action recognition. That is the
proposed scheme for action recognition.
However, the datasets described above have only el-

emental actions (e.g. walking and jogging) but no
transitions among the actions (e.g. from walking to
jogging). Since potential transitions among all of the
actions are extremely varied (i.e. intra-individual and
inter-individual variations), recording all of these vari-
ations is unrealistic. To cope with this problem, in the
proposed method, smooth particle transitions among
the elemental actions are explicitly represented by syn-
thesized transition paths. With the particle transitions
among action-specific models, the goal of this work is
to achieve frame-by-frame action recognition.

2 Related Work

While particle filtering[6] is effective, for tracking
robust to failure in image processing, it is not easy
to apply it to human pose tracking due to two rea-
sons: 1) curse of dimensionality and 2) complex body-
motion. Since a human body is high-dimensional data,
1) it is difficult to distribute particles sufficiently in the
high-dimensional space and 2) generalized motion pre-
diction for particle transition is difficult due to inter-
individual variation in motion.
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Figure 1. Continuous frame-by-frame action
recognition. A feature extracted from an ob-
served image is mapped to action-specific motion
models (indicated by red, blue, and green closed
curves). A mapping point (indicated by black
points) is acquired robustly by particle filtering
in the models. The model having the maximum
affinity for the mapping point is selected and then
its respective action is regarded as an action ob-
served at each frame.

In most of motion models, high-dimensional mo-
tion data is modeled in lower dimensions in order
to resolve the problems mentioned above. For low-
dimensional modeling, nonlinear probabilistic embed-
ding such as Gaussian Process Latent Variable Mod-
els (GPLVM[7]) is widely used. Several extensions of
GPLVM have been studied, for example, for modeling
motion dynamics (Gaussian Process Dynamical Mod-
els, GPDM, in short)[1] and dependency between dif-
ferent kinds of data that have the similar structures[8].
The latent models allow us to model multiple kinds

of actions as well as a single action; a set of indepen-
dently trained models[2, 3] and a unified model with
multiple actions trained together[2, 9, 10]. While se-
lection of an appropriate model at each moment is
required for a set of the independent models, it has
several advantages; 1) since the computational cost of
modeling grows as sample data increase in each model,
the independent models can be computed fast and 2)
each model is optimized for its respective action.
Synthesizing realistic transitions between different

poses has been studied in Computer Graphics, such
as motion graphs[11].

3 Pose Tracking in a Single Action

Our pose tracking is based on pose regression from
image features. This section describes its previous
methods for a single action.
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Figure 2. Learning motion prior and feature-to-
pose regression of a single action. (1) Feature
extraction (e.g. shape contexts[14]). (2) Shared
latent-structure modeling with GPDM. Each la-
tent variable corresponds to its respective feature
and pose as depicted by red arrows.

3.1 Motion Modeling by GPDM

Gaussian Process Dynamical Models (GPDM)[1]
acquire smooth dynamics of sample data in a low-
dimensional latent space X from high-dimensional ob-
servation data, joint positions in our experiments.
GPDM is defined by two mapping functions; 1) from a
point at t to a point at t+1 in the latent space, fD(x)
where x ∈ X , and 2) from the latent space to the ob-
servation space, fO(x). fD(x) gives us the capability
of prediction that is useful for tracking (e.g. used for
particle filtering[12]). The nature of GP also provides
the distribution (variance) of data.
Given a sample sequence with N frames Y =

[y1, · · · ,yN ], the mapping functions are acquired by
maximizing the joint likelihood of Y andXt+1 with re-
spect to X = [x1, · · · ,xN ] and Xt, respectively, where
Xt+1 = [x2, · · · ,xN ] andXt = [x1, · · · ,xN−1]. In this
optimization, similarity between components xi in X
is evaluated by RBF.

3.2 Mapping between Feature and Pose Spaces
by a Shared Latent Structure

For feature-to-pose regression, synchronized features
and poses (“Feature sequence” and “Pose sequence” in
Fig. 2) are modeled together. The connection between
them is established by the latent space shared by their
observation spaces, as shown by (2) in Fig. 2. With the
shared structure, each latent variable xi corresponds to
its respective pose and feature as depicted by thin red
arrows in Fig. 2

3.3 Particle Tracking for Pose Regression

Feature tracking is performed for feature-to-pose re-
gression at each moment. Feature tracking is achieved
by particle filtering in X . Each particle in X corre-
sponds to a feature. At each frame t, a feature is ex-
tracted from a captured image. The particles transit
from the ones at the previous frame (frame t−1) using
motion prior fD(·) and then are mapped to the feature
space. The likelihood ct,i of i-th particle at t (denoted
by xp

t,i) with regard to the feature at t (denoted by f t)
is expressed as follows:

ct,i = exp
(−wvσ

2
t,i − wo||fF

O (xp
t,i)− f t||2

)
, (1)

where σ2
t,i and fF

O (·) denote the variance of xp
t,i in the

model and the mapping function from X to the feature
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Figure 3. Pose tracking with multiple motion
models. (1) Feature extraction. (2) Particle
tracking using motion prior. (3) Mapping the
particles into the feature space for evaluating
their likelihood. (4) Mapping the likelihood-
weighted sum of the particles from the latent
space that has the maximum likelihood into the
pose space.

space, respectively. Weight variables wv and wo are
given empirically; wv = 0.5 and wo = 0.5.
Finally, the pose is estimated by mapping the

likelihood-weighted mean of the particles from X to
the pose space.

4 Continuous Action Recognition by Pose
Tracking using Action-specific Motion
Models

4.1 Particle Tracking by Simultaneously using
Multiple Action-specific Models

In pose tracking with multiple action models (Fig.
3), the model corresponding to an action observed at
each moment should be selected for correct pose track-
ing. Existing tracking methods with multiple motion
models[3] have the problems of unrobust tracking due
to using a single model at each moment and no tran-
sition path among the models.
To resolve these two problems, the following ideas

are employed in our proposed method:

• Multiple hypotheses of motion: Particles are
distributed in multiple models simultaneously for
multiple hypotheses of motion prior.

• Synthesized transition path: Transition paths
are synthesized from the real samples of multiple
actions. Motion dynamics along the synthesized
paths leads the particles smoothly to a next action
model.

Pose tracking with our motion models is designed in
accordance with Condensation[6]:

1. Particles are distributed in all models.

2. The particles are drifted using motion prior fD(·)
and diffused at t so that more particles are placed
near the ones having higher likelihood at t− 1, as
illustrated in (2) in Fig. 3. Note that the particles
are distributed simultaneously in multiple models.

3. Each particle is mapped to the feature space and
compared with the feature at t for evaluating the
likelihood of the particle by Eq. (1), as depicted
by (3) in Fig. 3.



4. The total sum of the likelihoods of all particles in
m-th model is considered to be the goodness-of-fit
between the model and the feature observed at t.
The goodness-of-fit, Fm,t, is expressed as follows:

Fm,t =
∑
i

cmt,i, (2)

where cmt,i denotes The model having the maxi-
mum goodness-of-fit is selected. This model is
denoted by Mmax. The likelihood-weighted sum
of the particles in the selected model, Mmax, is
mapped to the pose space for estimating the pose
observed at t, as shown by (4) in Fig. 3.

Diffusion among models is achieved via transition
paths, as well as within a model. Synthesizing the
transition paths is described in Sec. 4.2, followed by
inter-model diffusion via them described in Sec. 4.3.

4.2 Synthesizing Transition Paths among Multi-
ple Actions

As with motion graphs[11], the end points of each
transition path are determined so that their respective
poses have the local maximum of similarity between
pose vectors y of two actions a and b. The similarity
is expressed by −||ya

i − yb
j ||, where subscripts denote

i-th and j-th frames. y consists of 3D positions of all
joints.
New paths are synthesized by interpolating sample

poses. Compared with naive interpolation[11], good
connectivity can be achieved by finding the shortest
path between the samples via a number of intermedi-
ately generated interpolated poses in [13].
In the proposed model, an additional constraint is

employed by taking into account smoothness in the
sample motion. The existing methods[11, 13] control
smoothness of the transition by adjusting the number
of interpolating points. How to determine the number
of the points is important, which has not been dis-
cussed in [11, 13] Our method determines the number
of the points so that the curvature of the synthesized
path is less than the largest one in the sample motion.
Specifically, 1) interpolating points are initially located
at regular intervals, each of whose length is equal to
the maximum length between successive sample points
(denoted by lmax), between a pair of end points and
then 2) the end points are shifted along their succes-
sive sample points until all angles between successive
interpolating points are less than the maximum angle
in sample points, while the interpolating points are in-
creased so that the length between them is less than
lmax.

4.3 Particle Propagation via Transition Paths

Unlike Condensation[6], the proposed method dis-
tributes particles in multiple models and propagates
them among the models as follows.
In each model, all particles are diffused after drift

using motion prior. Diffusion is represented by the
following equation:

p(xd|xm) ∝ exp

(
−1

2
(xd − xm)2

)
, (3)
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Figure 4. Motion models and particles. Solid
black and blue lines depict real sample and syn-
thesized data. Red dots depict particles.

where xm and xd denote particles given by drift us-
ing motion prior and diffusion, respectively. Particles
each of whose nearest sample is one of the synthesized
samples are selected. Let m and n denote the mod-
els where the selected particle is located and the one
to which m connects via the synthesized path, respec-
tively. For each of the selected particles, the variances
σm

2 in m and σn
2 in n are computed. Then there is

exp(−σn
2) in (exp(−σm

2) + exp(−σn
2)) chance that

the particle moves to model n.

4.4 Action Recognition by Particles

An action observed at each moment is classified
based on the distribution of particles. The simplest
way is that the model Mmax having the maximum
of the goodness-of-fit, each of which is expressed by
Eq. (2), is selected as the one corresponding to the
action observed at each frame. However, this naive
selection might fluctuate the result of action recogni-
tion, in particular immediately before, immediately af-
ter, and during action transitions. As well as such
transitional states, temporarily-similar poses in differ-
ent actions also cause the fluctuation of the recognition
results.
To cope with this problem, the goodness of fit in

each model is smoothed by the Kalman filter. While
the Kalman filter cannot represent quick and sharp
changes, this disadvantage is acceptable because hu-
man action is not changed so quickly. By selecting the
model having the maximum response of the Kalman
filter, frame-by-frame action recognition is achieved.

5 Experiments

5.1 Image Features and Datasets

The bag-of-shape-contexts[14] were used for empiri-
cal evaluation. A feature at each frame was represented
by a set of the shape contexts obtained from the sil-
houette of a target person; 200 points sampled along
the boundary of the silhouette. Dissimilarity between
two features, f1 and f2, is expressed by ||f1 − f2||2.
Synchronized video and mocap datasets of multiple

actions were used for learning and evaluation. The
videos were captured at 30 fps (1024× 768 pixels). For
learning and ground-truth, a gyro-sensor based motion
capture system (IGS-190) was used. 51 dimensional
pose data (i.e. 17 3-DOF joints) was obtained.
Three kinds of action sets below were used:

• Set1 (four dance actions): Waving the arms
by different four ways.
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Figure 5. Action recognition results in action
set1. Top: observed images. Middle: Estimated
poses. Bottom: Estimated actions.
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Figure 6. Action recognition results in action
set3.

Table 1. Percentages of correctly classified actions
at each frame.

set1 set2 set3

M1 (no transition paths) 72.3 84.5 70.1
M2 (single motion prior) 78.2 85.9 71.8
M3 (proposed) 80.6 88.1 75.7

• Set2 (two gait actions): Walking and jogging.

• Set3 (six gait actions): 1) Walking, 2) walking
slowly, 3) walking fast, 4) striding, 5) jogging, and
6) stopping from walking and start walking.

Our datasets contain a number of transitions between
each pair of actions, which are required for validating
the proposed models. The type of action at each frame
in test sequences was labeled manually for evaluation.
While only one subject was captured for learning sam-
ples, five subjects were captured for evaluation.
With each of the action sets, three kinds of models

were tested (Fig. 4): M1) with no synthesized paths,
M2) with synthesized paths but using unimodal motion
prior at each moment, where all particles propagated
in a single model at each moment, and M3) with syn-
thesized paths using motion prior of multiple actions
models (proposed models).

5.2 Recognition Results

Figures 5 and 6 show the results of pose tracking
and correctly-estimated actions in set1 and set3, re-
spectively. While the difference among the estimated
poses of different actions is small, the actions could be
classified correctly.
Table 1 shows recognition rates per frame. In all

datasets, set1, set2, and set3, the proposed model

could outperform other models.

6 Concluding Remarks

This paper proposed the prior models of multiple ac-
tions for continuous action recognition by pose track-
ing. The models are acquired from independently
captured action sequences so that potential transition
paths between them are synthesized. Experimental re-
sults demonstrated that the synthesized paths and par-
ticles propagated in multiple models allow us to more
correctly classify observed actions frame-by-frame.
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