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ABSTRACT
Our goal is to develop a system for coaching human mo-
tions (e.g. rehabilitation). Such a coaching system should
have several function such as motion measurement, evalua-
tion, and feedback. Among all, this paper focuses on how
to modify a user’s motion so that it gets closer to the good
template of a target motion. To this end, it is important to
efficiently advise the user to emulate the crucial features that
define the good template. The proposed method automati-
cally mines the crucial features of any kind of motions from
a set of all motion features. The crucial features are mined
based on feature sparsification through binary classification
between the samples of good and other motions.

Categories and Subject Descriptors
I.5.4 [Computing Methodorogies]: Pattern Recognition-
Applications; J.3 [Computer Applications]: Life and Med-
ical Sciences

General Terms
Human Factors

Keywords
Motion coach, Rehabilitation, Pervasive health, Ambient as-
sisted living

1. INTRODUCTION
Most countries of the western hemisphere experienced a tremen-
dous increase in the life expectancy of its citizens. While
this trend can be observed for several decades now, there is
currently not end in sight. Hence, it is not surprising that
the World Health Organization [22] expects about 1.2 billion
people over the age of 60 in 2025. Estimations by the United
Nations forecast a similar trend and expect nearly 2 billion
people to be 60 and older by 2050, which would equal ap-
proximately 22% of the world population [7]. At the same
time, prolonged life expectancy and increasing survival of

acute diseases contribute to a rising number of people suf-
fering from chronic conditions [21]. Already today, more
than 75% of elderly people in all economic, social and cul-
tural settings are suffering from chronic diseases [20]. But
not only the prevalence of chronic illnesses, also the likeliness
of disabilities increases with age, which ultimately leads is
an increased risk of falls due to the declining physical abili-
ties. According to studies of the World Health Organization
[22] approximately 30% of people over 65 years and 50% of
people over 80 years fall each year, and about 20% to 30%
of these falls result in serious injuries with long-term conse-
quences for the patients [3]. In almost all cases, continuing
physical rehabilitation and training is necessary for enabling
patients an independent life after the incident.

While this is mostly done by medical personnel today, we are
currently facing the problem that it gets increasingly difficult
to find enough caregivers for the growing number of rehabil-
itation patients due to the demographic and financial con-
straints that most western nations are experiencing at the
moment [1]. Consequently, new approaches are necessary for
providing efficient and economically viable rehabilitation so-
lutions for the growing number of people requiring care [12].
As we are moving towards a world of smart devices [11] and
intelligent environments [6, 15], automated motion coaching
systems, which make use of the sensing infrastructures avail-
able in such technology-enhanced home environments [13],
are often cited as a promising solution for taking care of the
growing number of elderly people requiring physical training
[5, 23].

Addressing these challenges we aimed at developing an easy
to use system for coaching human movement. Today, com-
mon motion measurement systems (e.g. motion capture sys-
tems and multi-camera systems[17, 18]) are too expensive
and require users to wear binding devices. The proposed sys-
tem utilizes an inexpensive depth-measurement sensor (i.e.
Microsoft Kinect) in order to get high-measurement accu-
racy with no body-equipped devices. The system function-
ally consists of three modules. The first one estimates the
sequence of body pose from a depth image sequence cap-
tured while a user performs a target motion. The second
one evaluates the gaps between the estimated pose sequence
and that of good template. The third one coaches users
on how to modify their motion so that it gets closer to the
good template. This paper focuses on achieving the third
point. To this end, it is important to efficiently advise the
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Figure 1: Overview of the system.

user to emulate the crucial features that define the good
template. This is because many other features of the target
motion might be varied among individuals, but those varia-
tions give less impacts on evaluating the target motion. The
proposed method automatically mines the crucial features of
any kind of motions from a set of all motion features. The
crucial features are mined based on feature sparsification
through binary classification between the samples of good
and other motions. The following section provides a more
detailed overview over the proposed system.

2. SYSTEM OVERVIEW
Figure 1 illustrates the overview of the proposed system con-
sisting of three modules and two steps:

Offline model learning: This step is achieved before users
are coached by the system. In this step, two kinds of
computational models required by the system are pre-
pared. For learning the pose estimation model (i.e.
“Pose estimation models” in Fig. 1) that represents
the relationship between depth features and human
poses, the samples of a target motion are captured by
a Kinect and a motion capture system with synchro-
nization (i.e. “Kinect” and “Motion capture system” of
“Offline model learning step” in Fig. 1). The pose clas-
sification model (“Classification models” in Fig. 1) is
learned by the Support Vector Machine [2] (“SVM” in
Fig. 1) for evaluating whether the human pose is good
or not 1. In addition, the crucial features of the target
motion (i.e. “Crucial features” in Fig. 1) are mined
by a sparse coding regularization in the SVM. This
mining process is a core contribution of this paper.

Online coaching: With the model learned beforehand, the
system observes the motion of a user by a Kinect (i.e.
“Kinect”of“Online coaching step” in Fig. 1), estimates

1We assume that a target motion can be classified into good
and other motions. For example, any motion in rehabilita-
tion should be as correct (i.e. good) as possible.

the human pose at every frame (i.e. “Pose estimation”
in Fig. 1), evaluates whether or not each pose is re-
quired to be modified (i.e. “Motion evaluation at each
frame” in Fig. 1), and coach the user.

In the online coaching step, the three modules interact with
a user as follows:

3D human pose estimation: A 3D human pose at each
frame is estimated from a depth image captured by a
Kinect. While the basic estimation method is based
on [14, 4], more discriminative features are used for
improving the accuracy in pose estimation instead of
simple features proposed in [14, 4]. This is because the
proposed coaching system requires users to wait for a
feedback after his/her motion is captured (e.g. a few
seconds), while real-time processing is required in some
other applications (e.g. gaming interfaces). The accu-
racy of pose estimation is improved also by using the
real pose data captured by the motion capture system
instead of synthesized CG data.

Motion evaluation: The user’s pose is evaluated whether
it is good or not. If the pose is not good, it is required
to be modified so that it gets closer to a good template.
This evaluation is achieved by the SVM. Before using
the SVM, the pose sequence of the user is temporally
synchronized with that of the good template by the
dynamic time warping (DTW) [10].

Motion coaching: At each subsequence (i.e. several se-
quential frames) that must be modified, the interface
system [19] gives feedbacks to the user. Note that
there might be a number of differences between the
user’s motion and the good template motion, and it is
actually impossible to understand all of them simul-
taneously. The proposed interface system gives the
feedbacks one by one. More specifically, the system
gives the feedbacks from more crucial features, which
define the good template motion.

3. MINING CRUCIAL FEATURES
VIA FEATURE SPARSIFICATION

For evaluating the motion of a user (i.e. classifying the mo-
tion to good or other motions), the SVM is used in the pro-
posed system. This classification is performed with a num-
ber of features that represent the 3D pose and its motion of
a human body. Since the system should are applicable to
any kinds of motions and we do not know which features of
a target motion are crucial for defining the target motion, it
is better to exhaustively use all features that possibly rep-
resent a body motion. In experiments, the concatenation of
the following components was used as a 621D feature vector:

• 3D positions of all joints (3D × 18 joints = 54D)

• 3D velocities of all joints (3D × 18 joints = 54D)

• 3D accelerations of all joints (3D × 18 joints = 54D)

• 3D displacement between any pairs of joints (3D × 153
= 459D)



From the 621 features, the proposed method automatically
mines which body parts and/or motions are crucial for im-
proving the motion of a user. This mining is achieved by
the sparse coding regularization in the SVM, as proposed in
[9].

In classification, the inner product of the feature vector of
a test pose (denoted by v) and the weight vector wis com-
puted. If the inner product is above/below 0, the test pose
is regarded as a positive/negative class (e.g. good/others).
Therefore if components with a larger absolute value in w
correspond to crucial motion features that give a large im-
pact on the inner product. In learning the SVM, the l1 reg-
ularized logistic regression [9] is employed so that the gap
between larger and smaller absolute values of w gets much
greater.

This sparsification can be regarded as dimensionality reduc-
tion because the dimensions having smaller values can be
neglected. For dimensionality reduction, many other tech-
niques have been proposed (e.g. PCA, Isomap [16], GPLVM
[8]). Those techniques, however, cannot provide a user in-
tuitive feedbacks for understanding how to modify the mo-
tion. This is because these techniques project a vector from
a high-dimensional space to a low-dimensional space defined
by arbitrary subspace in the high-dimensional space. That
is, each axis in the low-dimensional space might corresponds
to multiple axes in the original high-dimensional space. As
a result, even if a motion feature corresponding to only one
axis is selected for motion coaching, the user might be re-
quired to move the body as follows: “you should move the
right hand, the right elbow, the left toe, and the hip so that
...”. On the other hand, in the proposed method, only one
motion feature (e.g. “the right hand” or “the right elbow”)
is selected from the low-dimensional space generated by the
sparse coding regularization.

4. EXPERIMENTS
Experiments were conducted with baseball pitching motions2

captured from 34 people; 13 good (i.e expert) players and
21 beginners. From 34 people, 445 sequences were captured
in total. Both of pose estimation and classification models
were trained by the data of 33 people, and the data of the
remaining one person was used for testing. Note that all 621
features were normalized.

The following two ways were tested for selecting motion fea-
tures that should be modified by a user in first:

Naivë selection: The distance between features of a user’s
pose and a good template is computed at each feature
component (e.g. 3D position of the right hand); the
distance at i-th feature is denoted by df . Features hav-
ing the larger distance are regarded as crucial features.

Selection with the sparsification: df is multiplied with
the weight of f -th feature (i.e. f -th component of w).
Features having the larger product are regarded as cru-
cial features.

2For validating the proposed system, a sport motion is a
good example because its exercise is important for skill pro-
ficiency of beginners as well as rehabilitation of experts.

time

(a) Crucial feature of naivë selection (i.e. left-toe velocity)

time

(b) Crucial feature selected by the proposed method (i.e.
right-hand velocity)

Figure 2: Visual feedbacks illustrating the differ-
ence between the user’s motion (shown with red)
and the good template (shown with blue) in pitch-
ing motions. Two examples in each of (a) and (b)
show the selected crucial motions at different two
frames.

Motions selected by the above two systems were checked by
expert players. In examples shown in Fig. 2, naivë selection
recommended the left-tow velocity as the most crucial mo-
tion (i.e. (a) in Fig. 2), while the right-hand was selected by
the proposed method (i.e. (b) in Fig. 2). It is natural that
the motion of the hand having a ball is more important for
pitching. Actually the experts also mentioned the validity
of the selection of the proposed method.

We also demonstrate the effectiveness of the sparsification
in motion evaluation. The results are shown in Fig. 3. Each
graph shows the accuracy of motion classification (i.e. good
or not) at each frame. The mean classification rate of all
445 sequences, each of which was evaluated by leave-one-
out cross-validation, is shown at each frame.

The means of the classifications rates in all frames were 67 %
and 76 % in (a) and (b), respectively. These results demon-
strate the effectiveness of the sparsification also in motion
classification. This effect is gained because, rather than a
high-dimensional feature space, a low-dimensional feature
space allows us to improving the generalizing capability of
classifiers such as the SVM, which was implemented with
LIBSVM [2] in the proposed system.

5. CONCLUSIONS
This paper proposes how to mine the crucial features in
any kind of motions. The crucial motions are mined by
the sparse coding regularization during training of the SVM
that classifies target motions into good or not. The weight
vector of the SVM shows which features are crucial for classi-
fying whether a user’s motion is good or not. In particular,
the sparse coding regularization allows us to enhance the
difference between crucial and non-crucial features.



(a) all features (b) features selected by
sparse coding regularization

Figure 3: Temporal histories of the mean classifi-
cation rates. After each test sequence is virtually
synchronized with a good template motion by the
DTW, the mean classification rate was computed at
each frame. In (b), only four features were selected
in decreasing order of the weight in w.

Experimental results demonstrated that 1) the proposed method
could extract intuitively-correct crucial features and 2) the
extracted features could improve the accuracy in motion
classification.
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